梯度下降是一种常用的优化算法,用于寻找函数的最小值。在 GBDT 中,它扮演着至关重要的角色。假设我们有一个损失函数
\(L\left( y,\hat{y} \right)\),其中
\(y\)是真实值,
\(\hat y\)是预测值。梯度下降的目标就是通过不断调整模型参数,使得损失函数的值最小化。具体来说,每次迭代时,沿着损失函数关于参数的负梯度方向更新参数,以逐步接近最优解。在 GBDT 中,虽然没有显式地更新参数(通过构建多颗决策树来拟合目标),但拟合的目标是损失函数的负梯度,本质上也是利用了梯度下降的思想。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。